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PROGRESS AND POTENTIAL

Materials science has heralded its

new paradigm in data-driven

science following the generation

of big data from high-

performance computing and

high-throughput

experimentations. Such big data

need to be standardized, curated,

preserved, and disseminated in a

way that is findable, accessible,

interoperable, and reusable (FAIR)

to make use of its full potential.

The materials science community

is in its premature stage

concerning adapting research

data management (RDM)
SUMMARY

The need for good research data management (RDM) practices is
becoming more recognized as a critical part of research. This
may be attributed to the 5V challenge in big data: volume, variety,
velocity, veracity, and value. The materials science community is no
exception to these challenges as it heralds its new paradigm of
data-driven science, which uses artificial intelligence to accelerate
materials discovery but requires massive datasets to perform
effectively. Hence, there are efforts to standardize, curate, pre-
serve, and disseminate these data in a way that is findable, acces-
sible, interoperable, and reusable (FAIR). To understand the cur-
rent state of data-driven materials science and learn about the
challenges faced with RDM, we gather user stories of researchers
from small- and large-scale projects. This enables us to provide
relevant recommendations within the data-driven research life cy-
cle to develop and/or procure an effective RDM system following
the FAIR guiding principles.
practices. In this work, we provide

detailed recommendations to be

followed within the data-driven

research life cycle, which aims to

promote RDM within the

community. More interoperable

materials databases and

standards need to be developed

and adopted within the

community to get the maximum

benefit from this initiative. The

nature of heterogeneous data in

materials science makes this a

huge challenge. However, if we

all, as a community, work together

to make our data FAIR, materials

discovery could indeed be

accelerated.
INTRODUCTION

Data are being generated exponentially by different research groups and organi-

zations from various fields to address growing concerns about social, health, and

environmental problems. The rapid advancement in computing and storage capa-

bilities over the last decade has also been a catalyst in this data deluge. Therefore,

it is not surprising that we now have increasingly voluminous and diverse datasets

available at hand. The size of such a dataset could range from hundreds of tera-

bytes to several petabytes. Fittingly, the term used to refer to these vast datasets

is big data,1 which presents modern researchers and scientists with a unique set of

challenges that need to be addressed to realize the full potential of such data.

Today, we are facing the so-called the 5V challenge in big data (Figure 1) which con-

cerns volume (amount of data), variety (non-homogeneity of data types, meaning,

and sources), velocity (the rate at which data are generated), veracity (quality and ac-

curacy of the data), and value (what users can do with the collected data).2 According

to SeedScientific,3 as of 2021, we create a voluminous amount of roughly 2.5 quin-

tillion ð1018Þ bytes of data daily. These data are acquired and collected from various

sources in both the industry and in academia from tech-giant companies, startups,

governmental organizations, research institutions, and individual users. These can

be either structured or unstructured data and can take on several forms, including

raw, processed, shared, or published, implying that disparate units and data types

accompany them.
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Figure 1. The 5V challenge of Big Data
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Technological advancement, with the emergence and adoption of high-perfor-

mance computing4,5 and high-throughput experimentation (HTE),6 has paved the

way for data to be produced at a higher rate than ever before.

However, all these points pose a question on the quality and accuracy of the data

being produced. Keeping track of and validating every data point is a tedious but

necessary job that needs to be acknowledged. Data must be verified and validated

before they can be used; otherwise, it will create biased and inaccurate results with

huge variance.7

Before we can fully make sense of the problems that arise from this data explosion, it

would be useful to first understand what data are and why they are becoming an

increasingly important commodity. Data are considered as the new oil of the digital

era, as popularly publicized by the media.8 Oil is the driving force of the machines

and industrial products we enjoy today. Similarly, data are deemed to enable the

equivalent with information and communication technology by being the driving

force of software applications and digital marketing now, and even more so in the

future. It is one of the assets of today, if not the most important. One of the most

prominent use cases of big data is in machine learning. Big data are an enormous

collection of data that reveal patterns, correlations, and dependencies using ma-

chine learning, which cannot be extracted from small datasets.9 They enable ma-

chine learning algorithms to perform better by making more accurate predictions10
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and reducing issues related to over-fitting11 and sampling bias. However, such data-

sets need to be processed for us to truly extract and make use of their full potential.

When data are processed, analyzed, and utilized efficiently, they can produce digital

solutions of much greater value. Well-processed data are used in feeding machine

learning models that escalate the process of pattern discovery and prediction.

Many factors affect the performance of a machine learning model, but the quality

and instance of the data are at the top of the list.12 Redundant, noisy, and irrelevant

data undermine the predictions made by machine learning algorithms. Therefore,

data pre-processing is considered the most important and time-consuming task in

this process and should not be overlooked.13–17 Pre-processing includes data clean-

ing, normalization, feature extraction, feature selection, feature engineering, trans-

formation, outlier detection, and the detection of missing and inconsistent data.

These steps are essential and will significantly affect a machine learning model’s ef-

ficiency and accuracy; thus, organized raw data are vital.

To mitigate these challenges, the wider research communities are increasingly

recognizing the need for research datamanagement (RDM) practices that will enable

higher research impact, data reuse, and preservation for the long term.18 This con-

stitutes the planning, organization, curation, discovery, accessing, sharing, and pub-

lishing of research data.19 Efficient RDM practice addresses all aspects of research

datasets that are sourced, produced, and used within the life cycle of a research proj-

ect, which includes, but is not limited to, records, literature, experiments, parame-

ters, measurements, surveys, interviews, simulations, code, algorithms, software ap-

plications and their versions, packages, intermediate data results, and final output.20

To maximize the use of these data, it is necessary to standardize, curate, preserve,

and disseminate them with proper data management practices. A term that will

heavily be referred to in this paper is metadata. Metadata is often understood as

data about data. It answers the questions of what, when, where, how, and why

data are created and utilized. The proper standardization of metadata is one of

the building blocks in achieving an effective RDM.

The materials science community is no exception to all the aforementioned chal-

lenges when dealing with big data and the management of such. Currently, we

are in the fourth paradigm of materials science where materials discovery is data

driven, which combines experimental automation, artificial intelligence, and data

management tools to revolutionize scientific research.9,21,22 In the regime of data-

driven materials science research, having well-organized and curated data is vital

to leverage substantial datasets to reach a critical mass.

This white paper aims to understand the current state and challenges associated

with data-driven materials science and big data management. To do so, we survey

researchers working on a small-scale research project and another within a large

consortium. We analyze the current research status of each community and the

challenges they face regarding the use and management of research data. This

enables us to provide relevant recommendations to develop and/or procure an

effective RDM system following the findable, accessible, interoperable, and reus-

able (FAIR) guiding principles,23 in accordance with the data-driven research life

cycle.
DATA-DRIVEN MATERIALS SCIENCE RESEARCH

The world constantly needs new materials and solutions to sustain the key sectors

of our economy, yet the discovery of such materials has more or less followed a
3616 Matter 5, 3614–3642, November 2, 2022



Figure 2. The four paradigms of materials science
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trial-and-error process.22 Up until the computational science era, the average

molecule-to-market lead time for new materials was 10–20 years, which is in no

doubt a huge amount of time.24 Now, materials science is entering a new regime

beyond experimental and computational processes. Data science, machine

learning, and artificial intelligence are revolutionizing people’s everyday lives,

with all communities adapting them to their work. Materials science is no excep-

tion to this trend, as it heralds its new paradigm of data-driven science21,25,26

(Figure 2). This new paradigm represents a new way of thinking that does not

replace but rather complements the previous fundamental computational and

experimental approaches.27

The Materials Genome Initiative (MGI)28 was inaugurated in 2011 with the aim of

achieving a reduction of greater than 50% percent lead time and have materials

ready for the market within 2–3 years. A huge catalyst to achieving this mission

is the utilization of artificial intelligence and the adoption of data-driven science.

Data-driven materials science extracts knowledge from materials datasets to auto-

mate and accelerate materials discovery and validation. Because of the relative

scarcity of many types of materials data, and the inherent impracticality of gath-

ering massive annotated datasets, a brute force strategy of collecting massive da-

tasets, such as those used for image recognition, natural language processing, and

neural translation, is untenable in materials science.29 The possible configurations

of chemical and molecular structures to achieve a new material are practically in-

finite.9 Therefore, data-driven science plays a role in finding these relevant config-

urations through machine learning techniques in a much faster and more efficient

way than trial and error. By applying data science to materials science research, we

can accelerate materials discovery at a significantly faster pace.7

ACADEMIA EXPERIENCES

Data are used, accumulated, and created within a research project regardless of the

field of study. Documents, scientific papers, simulations, and calculations are the

most typical and essential artifacts produced in research.
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Working with interdisciplinary teams within a research project is a common and

encouraged practice aimed at solving higher-scale problems. Common projects,

for example, operate as a result of collaborations of different research groups

from different institutions across the globe. Data sharing is traditionally done

through physical hard drives, shared institutional network, or cloud drives. However,

things can get lost, forgotten, or corrupted in this practice of data sharing, aside

from device-related issues such as storage damage and limit. Thus, we are faced

with a need for an efficient data sharing and reuse infrastructure to allow consistent

and secure data exchange between team members. Moreover, tracking of research

data can be discontinued by a researcher’s departure until the replacement con-

ducts the work. There are common cases where the team has to re-do some of their

work, which is inefficient and expensive, because the new research conductors

should deal with untraceable collections for themselves.

In this section, we learn about the first-hand experiences of researchers concerning

the challenges they face in dealing with research data and the approaches they pro-

pose to handling those challenges.

Small-scale collaboration user story: The AIPAM project

Scientific research often includes several collaborators. Even when the work of an in-

dividual collaborator may be compartmentalized or abstracted from other mem-

bers, the work may still need to be aggregated into a contiguous body. Such a

contiguous body can be represented by a data-flow pipeline by which the data of

experiment and computation flow in different forms. In particular, as an interdisci-

plinary project demands an effective engagement of each researcher to other fields,

the data pipelines are critical for the transferability between the fields of each exper-

tise. Therefore, data management in the generation, transformation, and assimila-

tion becomes a crucial part of the research as their research expands in both volume

and scope.

There have emerged materials acceleration platforms such as BIG-MAP, Materials

Project, and AiiDA. These platforms play a role in centralizing data flow in materials

discover, while data collection and dissemination are their primary objectives.30,31 In

contrast, in small-scale collaborations, the main goal would instead be publications

of their discoveries, such as newly designed materials and conceptualized chemical

reactions. The task of data collection and dissemination is often prioritized at lower

ranks than the main objectives. Therefore, such task re-prioritization results in obsta-

cles when the project scales up.

For example, in our research project, Artificial Intelligence Platform for Accelerating

Materials Discovery (AIPAM), we faced difficulties in inducing a new member to the

team to replace/reproduce the work of an existing team member who had left the

team. This project implements a data-driven high-throughput pipeline to discover

optimal compositions of halide perovskites and corresponding chemical and elec-

tronic properties for photovoltaic applications. We devised the pipeline by using a

plethora of Python modules and libraries, while conducting a series of research

aiming at the discovery of optimal compositions of halide perovskites and corre-

sponding chemical and electronic properties for photovoltaic applications.32–34

This complexity and peculiarity of the project called for specific expertise and

domain knowledge at different stages in the pipeline during the development

period. In particular, the high-throughput density functional theory (DFT) and

feature engineering stages of the pipeline required deeper insight into two different

specialized domains for pre-processing and post-processing tasks. For
3618 Matter 5, 3614–3642, November 2, 2022
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illustration, the pre-processing step of the high-throughput DFT required chemical

intuition because we were interested in the chemical composition of perovskites

and their impact on the physical properties. At the same time, we needed to post-

process the results to extract the key data and understand the sensitivity of

computed results on varying materials as well as the theoretical methods. Building

a well-organized database at this stage was critical to have a consistent dataset to

train a machine learning model and to practice FAIR data curation. Subsequently,

while we combined the post-processing in the high-throughput DFT and pre-pro-

cessing in the feature engineering steps, finding the appropriate feature inclusion

was necessary to infer the physical properties. In particular, we learned that, when

we predicted the descriptor values that were estimated by using the DFT results,

the workflow was more efficient and robust than when we directly predicted the

DFT-computed physical values depending on the machine learning algorithms.

Accordingly, the in-depth understanding of both quantum chemistry and machine

learning algorithms was a prerequisite for our workflow development. Therefore,

designing and implementing a back-end machine learning engine was challenging

at the small-scale collaboration size because only a handful of colleagues shared

such domain overlap. This crucial aspect impeded the project’s successor from be-

ing familiar with the complete data generation pipeline.

One of the reasons the team struggled with formally representing the complex

computational workflow35 was that it encompassed two different domains; namely,

material science and machine learning. Moreover, as the research progressed, more

refinements were added to the workflow, which posed additional requirements to

represent an addition or a change in knowledge.

Moreover, an additional hurdle for member’s transition was attributed to the fact

that the research artifacts such as (paper, code, data) needed to be consolidated

by the new member, without having any systematic approach. Obtaining insights

through the data could be time consuming and may require a steep learning curve

due to the varying scope of the applied fields. Moreover, the papers produced

alone did not contain all the information required to reproduce the results from

the existing team member. The page limits in most scientific journals resulted in

the paucity of the content required to sufficiently reproduce the results. This re-

straint in practice often occurred in reproducing the previous results for any new

members.

Non-reproducibility of results is a statistically significant issue in the research com-

munity. According to a survey presented by Baker,36 around 70% of researchers

have been unsuccessful in reproducing the results from another research. In the

case of AIPAM, several factors contributed to the non-reproducibility of the results,

which included code revisions used, approximation criteria, and post-processing of

the data. Such complexity demands more rigorous representation of knowledge to

extend FAIR protocols to workflows.

All these problems faced by the AIPAM team from preserving and disseminating the

intellectual property created during the research warrant a more robust system of ar-

tifacts consolidation and knowledge representation. One of the ways in which this

can be done is to utilize a knowledge representation infrastructure based on

ontology and metadata. Moreover, adhering to a consistent template for the input

and output data mitigates any confusion and cognitive overload37 for newmembers.

Such a template can appropriately be defined as a part of a data management plan

(DMP).
Matter 5, 3614–3642, November 2, 2022 3619



Figure 3. Data tables describing the generation and flow of research data across the BIG-MAP project
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Large consortia user stories: The BIG-MAP project

The development of new electrochemical storage devices is necessary to accelerate

the transition to a sustainable future. Several limitations are currently hindering this

transition, from the scarcity of raw materials to lack of a fundamental understanding

of the phenomena happening in a battery, in particular at its interface. Numerous

large-scale national and international consortia have been established to tackle

the ambitious goal of accelerating battery discovery. These consortia include Bat-

tery500 in the Unites States,38 BATTERY 2030+ in Europe,39 the Faraday Institution

in UK,40 and Post Lithium Storage Cluster of Excellence (POLIS) in Germany.41 These

projects have in common that they establish materials acceleration platforms, which

combine data from different battery domains, from multiscale models and material

synthesis to characterization and cell testing. Data, intended as any research output,

e.g., results, models, samples, scripts, standard operating procedures, and meta-

data, are used at different levels, from benchmark theoretical and experimental re-

sults to train machine learning models to predict materials properties, bridge scales,

and identify underlying laws of nature. FAIR data is thus a fundamental requirement

to enable this research approach. Standardization of RDM is one of the main focuses

of the BATTERY 2030+ and of one of its flagship project, Battery Interface Genome –

Materials Acceleration Platform (BIG-MAP).42 BIG-MAP aims at accelerating the bat-

tery discovery through the development of a unique infrastructure and accelerated

methodologies to bridge data and competences across the entire battery value

chain. The core competences within BIG-MAP rely on artificial intelligence, high-per-

formance computing, autonomous synthesis robotics, and high-throughput charac-

terization. A detailed and comprehensive DMP is fundamental not only to have an

overview of the terabytes (TB) of data produced by each of the 34 partners but,

more importantly, to follow the flow of data between partners and battery domains.

Figure 3 shows an example of two entries for atomistic simulations and characteriza-

tion tasks and their connections.31 Focused on what is produced, rather than how,

the DMP is centered on data tables describing which data are generated and

what is their type and format. Starting from these tables, is it possible to generate

links between the battery chain; for example, indicating that the data generated

by simulations are collected to benchmark characterization results, or characteriza-

tion data are delivered to simulations to provide atomistic insight into a phenome-

non, as indicated in Figure 3. Figure 4 shows the overall link between the different

domains involved in BIG-MAP. To ensure their FAIRness, data are published

open-source in the Materials Cloud Archive (tag BIG-MAP).43,44 The scrips are,

instead, collected as apps in the BIG-MAP App Store.45 It is important to point

out that some data (in particular, from industrial partners) are protected by intellec-

tual property rights (IPRs). The BIG-MAP infrastructure has thus different levels of
3620 Matter 5, 3614–3642, November 2, 2022



Figure 4. Flowof data between the different domains involved in the BIG-MAP project (inner circle) and the BATTERY 2030+ consortium (outer circle)

The ambition is to connect the entire battery research in Europe and beyond.
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openness. The largemajority of the data are open-source; however, when necessary,

some data are restricted and accessible only to the consortium.

The definition of a DMP has been a group work, which involved experts from each

battery domain. This allows all the techniques involved in the project to be covered

as well as the data wishes from the different partners. Starting from the data pro-

duced in each task, we have been able to create a data network within the work pack-

age, project, and beyond. Because of the variety of data sources, a platform to store

data from the entire battery domain is not ready yet (BIG-MAP is working in that di-

rection). In particular, experimental and theoretical data are stored in very different

ways, which are often not machine readable and interoperable. Our intermediate

approach is to create an interface to allow theoretical models and autonomous ex-

periments to talk to each other.

Beyond the BIG-MAP project, the entire BATTERY 2030+ consortium (six research

projects in total) has adopted a similar DMP template. This has also allowed data

to be linked across projects; e.g., the data infrastructure established in BIG-MAP

can be used in the SPARTACUS project.46 The process of identifying links is, at

this point, manual, inefficient, and very tedious because it is based on visual inspec-

tion of several thousands of spreadsheet lines. By embedding ontological concepts
Matter 5, 3614–3642, November 2, 2022 3621
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into data, i.e. by establishing an ontology for data based on the battery ontology

(BattINFO),47,48 the consortia aim at automating the linkage between data, thus

contributing to connecting all of the battery research in Europe.

Funding agencies are extremely supportive of the implementation of RDM plans.

This, in fact, does not only increase re-usability of data beyond the funded project

but also increase the trustworthiness of the data themselves, allowing other re-

searchers to reproduce results or to standardize protocols and infrastructures. The

European Commission, for example, established a pilot project under the Horizon

2020 program, called Open Research Data Pilot (ORD pilot),49 aiming at increasing

the awareness on RDM and their practical applicability. Similar approaches have also

been taken by national funding agencies, publishers, and universities.

The community is now at a stage where defining DMPs is a requirement for most new

projects, and researchers are starting to see the importance of sharing their data.

However, the practical implementation of DMPs is still at its early stages. Very often,

research data are stored in private repositories, lacking the basic FAIR principles,

thus not fulfilling the requirements listed in the DMP. Moreover, the lack of a com-

mon data ontology, and the large number of different approaches adopted and re-

positories implemented, make the link between data and projects difficult. Thus, to

be effective, DMPs require the efforts of the entire community to define standards

and ontologies, which need to be chemistry and technology neutral. Dedicated

manpower is needed for this. The largest research initiatives should take the lead

in this, organize workshops, and draft memoranda of understanding, educating

the new generation of scientists in how to handle data in the correct way. Research

is not only final results but also the entire path to produce them.

FAIR GUIDING PRINCIPLES

To achieve efficient RDM that solves the challenges of handling big data, it is impor-

tant to understand and follow the FAIR guiding principles. The FAIR guiding princi-

ples23 aim to improve the current infrastructures used in making research data reus-

able. These principles describe distinct considerations for data publishing that can

be understood by both humans and machines to support deposition, exploration,

sharing, and reuse. They are domain-independent, high-level principles that can

be applied in various research fields.50 These principles define characteristics that

data should possess in order to facilitate discovery and reuse by other members

of the community. Following these principles is a vital step toward making data hu-

man and machine readable.

Findable

Making data findable is motivated by open science research. Open science research

ensures that data are transparent and available to all of academia, industry, and

governmental stakeholders.51 With the amount of research projects being conduct-

ed worldwide, it is most likely that several projects are utilizing the same datasets

even for different purposes or, if not explicitly the same, a close variation of one.

Having said that, it would be useful and practical to be able to search for these

data in a findable way in order to avoid doubling of work to save resources and

energy.

Accessible

The A in FAIR means accessible. Once data are found, users must have clear infor-

mation on how to access them and their respective metadata. The scientific field

is slowly diverting toward open access of data, which implies that data can be
3622 Matter 5, 3614–3642, November 2, 2022
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accessed by anyone, not just the ones working on the project.7,9 However, since we

do not always desire that due to privacy, security, ethical, and intellectual property

issues, part of data management is defining access and authorization rules to one’s

data. Access conditions may vary, including access on request, ethics approval may

apply, public access, restrictions may apply, or temporary restriction, depending on

the needs of the project or the policies of the funding entity. It is then important to

note that FAIR data are not equivalent to open-access data.52 While open access is

for everyone to have all published data at their disposal, FAIR defines clear and

concise rules on who has the specific authority for this privilege.

Interoperable

Interoperability is the ability of different systems, environments, and non-cooperat-

ing resources to communicate, work together, and understand each other with min-

imal effort.23 As the name suggests, data should operate across, inter, or among,

different applications. Data should be comparable in that they can be understood

from various implementations. The same data column may be named differently

but mean the same thing and serve the same purpose. Likewise, a data column

may be named the same but actually mean opposite things. Machines and humans

alike need to notice this distinction and make reasonable decisions based on this

observation to maintain data integrity. It is important for data to be delivered with

standard formats and units, much like speaking the same universal language, to

maximize their benefit for users.

Reusable

The R in FAIR is defined in several ways but all essentially mean the same thing. The

official definition is reusable,23 although others also interchange it with the terms

reproducible53 and repurposable. This implies that one should be able to utilize

data created from one research project or scientific question into another different

application. Some materials and data can be used for different scenarios; therefore,

it would save a lot of time and resources if one could use the same existing data from

a known and reputable source.

Having data that are reproducible also helps in research validation and verifica-

tion.50 What is obvious to you, with the skills and knowledge you currently have,

does not apply to everyone else or even to the future you within a few months or

years.

RECOMMENDATIONS

Now that we understand what FAIR means and how they contribute to the success of

a research project, a question that could arise is how can a research project imple-

ment the underlying principles in an operational context? The general research proj-

ect life cycle for data-driven materials science is illustrated in Figure 5. Although this

flowmight not exactly agree with the practice of each and every data-driven material

scientist, we developed this life cycle based on personal experiences. We expect

that other researchers’ flows will at least have a similar variation to this.

In this section, we traverse through this life cycle and briefly explain what wemean by

them. We then propose a set of recommendations and best practices to guide re-

searchers what FAIR steps to take at each phase of their research flow. By following

these practices, researchers are expected to achieve proper data management and

dissemination guided by the FAIR principles. These recommendations were

formulated by combining the most relevant and urgent propositions from litera-

ture50,52,54–56 and by suggesting our own based on the user stories in the previous
Matter 5, 3614–3642, November 2, 2022 3623



Figure 5. Data-driven materials science research data life cycle

We traverse through this data life cycle and provide recommendations for each phase on what key

steps to take to achieve FAIR data.
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section. The aim of these recommendations is to enable effective data sharing and

reuse to preserve data value for long-term use.
Project planning

Project planning is the initial phase of research. This includes recognizing a problem

and formulating a hypothesis to prove. Concurrently, responsible researchers

should make several key decisions and considerations about data management as

part of the planning before even starting the data creation/collection process.

Decide on the data you collect and how to store them

Data are a crucial component in the development of a research project; therefore, it

is necessary to choose their properties carefully. The first step in ensuring a well-

organized project is deciding on the input data’s source, type, and format. In mate-

rials science, computational and experimental scientists’ results, parameters, simu-

lations, and experiments provide a valuable data source. Likewise, existing data and

third-party data sources from materials databases are also accepted and encour-

aged. It is essential to consider the implications (including intellectual property

[IP], copyrights, and ethical and legal considerations) of using these data sources,

including the coverage (temporal and/or geographical) on how the data will be

used and shared during and after the completion of the project. An expectation

on data volume to be used within a project shall be made clear in the beginning,
3624 Matter 5, 3614–3642, November 2, 2022
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as this will later facilitate the structure and storage of the needed database. Last,

staying consistent with these decisions and following them throughout the research

life cycle is equally important.

Create and follow a detailed DMP

Efficient planning from the early stages of a research project life cycle has been

proved to be the key to successful RDM that yields good-quality research data.

Therefore, one of the most important activities aimed at raising awareness about

research data is the creation of a detailed DMP.31

ADMP is adocument that answers questions about howdatawill bemanaged, curated,

and preserved, among other aspects of the data life cycle. A good DMP records what

data are created, sourced, and analyzed and how such will be used and processed. It

also includes how they will be stored and accessed and who has the authority to do

such. Basically, it is a living document articulating what (type of data), why (rationale),

and how (methodology) data flow throughout the entire project life cycle. In addition,

aligning the DMP with previously published DMPs allows us to potentially retrieve

public data and share the new data with a larger community. To do so, it is important

to adhere to RDM guidelines and align with published standards and ontologies.

The information captured in the DMP could serve multiple purposes to ensure long-

term FAIRness of a dataset, including the following:

� Contributing to the metadata capture process for both interim and final

data results. Many institutions, such as the University of New South Wales,

Australia,57 provide data management tools that enable exporting metadata

from plans to support data publishing and reuse.

� Providing a ‘‘live’’ checklist for important RDM activities throughout the

research project.

Although the definition of a DMP does sound intimidating, it is really nothing more

than a documentation of how you envision your data to be managed and how you

plan to make it FAIR. It is relatively lightweight, with usually no more than 10 pages,

and to be seen by only a limited number of people. A helpful tool to get you started

is DMPOnline,58 which can help you draft, review, and share DMPs that meet orga-

nizational and institutional requirements. Currently, an institutional requirement for

DMPs around the world is still considerably rare; however, we are advocating for

everyone to pick up this practice to progress into a better scientific community.

Develop a file and folder naming standard

Best practices for file and folder naming should be adopted to ensure that data are

easy to locate and use. It is recommended to use meaningful names for files and

folders; e.g., projectName_softwareUsed_importantVariables_06012022.csv is

significantly better and informative than test1.csv. Moreover, ensure that file and

folder names are machine readable with an interoperability with parsers on any com-

puter platform. This implies that the use of special characters such as:&$![]{}/should

be avoided as they are often used for specific tasks in a digital environment. Some of

the most popular naming conventions used in coding,59 which can also be adapted

to concatenate useful information within file and folder names include Snakecase

(e.g., project_name_date), Pascalcase (e.g., ProjectNameDate), and Camelcase

(e.g., projectNameDate). Figure 6 shows the file and folder structure developed

and adopted for the AIPAM project described in section ‘‘academia experiences.’’
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Figure 6. File and folder naming convention developed and adopted for the AIPAM project
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Data acquisition and data processing

The data acquisition phase in materials science research includes data creation,

extraction, and procurement from computations and experiments. If the objective

of the research is very niche, such as optimization of organic-cation- based halide

perovskite,34 the procurement of data from a material science database might not

be possible due to availability issue. Moreover, obtaining data from computations

and experiments can be very expensive as they require significant computation

and operational complexities. This motivates adoption of active learning or data-

driven machine learning to resourcefully acquire new data. Data-driven science is

often utilized to tackle sparse data problems. The objective of data-driven machine

learning is to form an initial surrogate model using the available data and use this

model to determine what additional data would improve the accuracy of the model

and minimize uncertainties. In case initial sparse data are not available, random data

acquisition methods are often utilized60,61 to form a sparse yet sufficient initial

model. Such a principled approach enables the acquisition of more informative

data rather than obtaining new data completely random. Several methodologies

are available in the scientific literature that deal with active learning or data-driven

machine learning; the two prominent ones are Bayesian optimization62 and rein-

forcement learning.63

Once data are procured, they will undergo a phase commonly referred to as data

processing. This process includes data cleaning, transformation, scaling, dimension

reduction, and outlier detection. These processed data are crucial in training

machine learning models for materials discovery and thus need to be efficiently rep-

resented to enable access and discovery for long-term use.
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Figure 7. FAIR digital object
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Define FAIR digital objects

The concept of FAIR digital objects was first introduced in 2018 from the Turning

FAIR to Reality report of the European Commission’s 2nd High-Level Expert Group

on the European Open Science Cloud (EOSC).52 A digital object is any object

located in a digital memory or storage that holds informational value. This can be

a document, a dataset, or an image and essentially includes all the research data

defined above that are stored digitally. A FAIR digital object is any informational

unit presented according to the FAIR principles. The report by the European Com-

mission52 defined a FAIR digital object as a digital object encapsulated by identi-

fiers, standards, and metadata. In our paper, we are building on this model to

make it more complete and robust. Our new representation of a FAIR digital object

is illustrated in Figure 7, adding layers of domain-specific ontologies and

documentation.

Create globally persistent identifiers

Globally persistent, unique, and resolvable identifiers (IDs) such as a digital object

identifier (DOI) should be assigned to digital objects to make them findable and

to enable citation and access. These unique identifiers serve as the identifier of

the digital objects that will be used to represent and locate them.Within a database,

this can be implemented by creating searchable indices for every entry that can

easily be referenced.

Within a Structured Query Language (SQL) database, this implies having a primary

key column for all tables, and, in MongoDB, this means representing every docu-

ment with either an ObjectID or a self-defined identifier key. For more examples,

a scientific publication, which is one of the digital artifacts of a project, is issued

with a unique DOI once published, and this is what helps other researchers to locate
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and cite this work. Other common identifiers for papers include International Stan-

dard Book Number (ISBN) and International Standard Serial Number (ISSN). Inher-

ently, authors of said publications are also identified with an Open Researcher and

Contributor ID (ORCID).64 Registering for an ORCID account is highly encouraged

in the research community to be able to uniquely distinguish researchers from one

another and to connect their respective contributions to their name.

Use widely adopted data standards and associated file formats to ensure
interoperability

To enable seamless creation and utilization of FAIR data, data standards are essen-

tial. Data standards are guidelines by which data are described and recorded,

including documented agreements on representation, format, definition, struc-

turing, manipulation, use, and management of data.65 At present, such standards

in materials science are still premature27 but are continuously being developed, as

we will further understand in the following recommendations on ontologies and

metadata. The use of open file formats is highly recommended for long-term use,

preservation, and interoperability as these files are usually maintained by a stan-

dards organization and can be used by anyone. Table 1 summarizes the common

file formats used in all fields of research, including materials science.

For materials science molecule structure modeling, the most common and highly

supported file formats include the chemical table file format family (.mol, .sd,

.sdf), Chemical Markup Language (.cml), XYZ (.xyz), Crystallographic Information

File (.cif), and Protein Data Bank (.pdb) format. These file formats are highly

supported in different simulation software and materials repositories. It is recom-

mended preserve your output files in one or more of these formats not only for

long-term use but also for interoperability as these are some of the most widely

used formats in the field. Indeed, it is impractical to save them in all literal formats,

therefore the options depend on the goals of the project. For example, if the goal is

for visualization using JMOL67 or VESTA,68 CIF and XYZ file formats are readable and

supported but POSCAR is not. Moreover, Gaussian outputs (.gif) can only be read

with Gaussview,69 which limits their access and interoperability. In these cases,

it is then preferred to save them in another format or convert them to another

more open format (elaborated in the recommendation in section ‘‘experimental

validation’’).

Support and develop domain-specific ontologies

One of the potential problems that can arise in collaborative research is adhering to

formal naming conventions,70 system of measurements,71 and means to formally

represent research knowledge. The former issue of naming conventions and system of

measurements can be circumvented by team-wide implementation of standard nomen-

clature/taxonomy72 and a system of measurements. However, representing research

knowledge is still a subject of active research. Unlike taxonomy, where mere formal

categorization of an entity is established, knowledge representation requires a more

elaborate schema. It often demands additional structure, such as relation between

various entities, rules for combining or interacting with entities, and associating various

properties. Ontology provides a mechanism to establish such rigorous representation

of knowledge.73

In computer science, ontology-based knowledge representation pertains to represent-

ing digital objects, relation between those objects, and inference rules governing

interactions.74 Domain-specific ontologies, such asmaterials ontology,7 organizational

workflow ontology,75 gene ontology,76 and battery ontology47,48 can be adopted to
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Table 1. Closed versus open file formats for text documents, spreadsheets, images, videos, and presentations66

File type Instead of using (closed) Consider using (open)

Name File extension Name File extension

Text documents MS Word .doc open document format .odf

HTML .html, .htm

plain text .txt

PDF .pdf

Spreadsheets Excel, Numbers .xls, .xlw, .numbers open document spreadsheet .odf

comma separated .csv

Images Photoshop, HEIC Image .psd, .HEIC JPEG, PNG .jpg, .png

GIMP XCF .xcf

TIFF .tiff

scalable vector graphics .svg

bitmap .bmp

GIF .gif

Videos Windows Media Video .wmv MPEG1, MPEG4 .mpeg, .mp4, mpeg4

Quicktime .mov DivX, Ogg Theora, Dirac .divx, .ogv

Presentations Powerpoint, Keynote .ppt, .pps, .key PDF .pdf

HTML .html, .htm

open document presentation .odp

Databases MS Access Database File,
Oracle Trace Map File

.mdb, .trm database file .DB

JSON .json

eXtensible Markup Language .xml

comma separated .csv

We recommend the use of open file formats for long-term use, preservation, and interoperability. PDF, portable document format; TIFF, tagged image file

format; JSON, Javascript object notation.
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relate and interlink domain-specific objects to another. This can help in automating the

linkage between data across several research projects in the same domain and form a

precursor tometadata. In thematerials science domain, ontology-based database and

metadata enable enhanced search for material properties by enabling semantic

queries.77 This can potentially lead to shortening of the time required for a researcher

to look for a material with desired properties.

A recent work on ontological consideration to scientific workflows is presented by

Celebi et al.,78 with the objective of enhancing reproducibility of results in scientific

research in general. Although the research on scientific-workflow-related ontology is

currently premature, our case-based survey suggests that adopting standard

domain-specific ontology such as BattINFO in the BIG-MAP project or developing

specific case-based ontology that accommodates peculiarities of one’s research

can encourage better collaboration and help mitigate cognitive burden related to

reproducing/validating the results of one’s peers in both large- and small-scale

collaborations.79

Define rich metadata

Rich and sufficient metadata should be provided to understand how, why, when,

where, and by whom the digital objects were created. They provide context and

provenance to digital objects that are essential to achieve FAIRness on all aspects.80

Unlike data formats, whichmay be only machine readable, metadata are designed to

be human readable and, by implementing a schema, also machine readable.

Much like ontology, it is recommended to establish standard taxonomy and schema

in metadata to encourage interoperability across several contributors of the
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research. According to American Library Association’s Committee on Cataloging:

Description & Access, ‘‘A metadata schema provides a formal structure designed

to identify the knowledge structure of a given discipline and to link that structure

to the information of the discipline through the creation of an information system

that will assist the identification, discovery, and use of information within that

discipline’’81

A key example of this can be found in materials science, where metadata standards

such as the Crystallographic Information Framework (CIF)82 provide a metadata-

based schema to represent information pertaining to crystal structures. This includes

standardization for representing space groups, unit cell parameters, and measure-

ment conditions such as temperature at which the reading was taken. Another

instance of standard metadata schema is the IPTC (International Press Telecommu-

nications Council) Photo Metadata Standard,83 which enables adding information

depicted in the images, such as about people, places, and items, using a framework

consisting of fields, descriptions for how fields should be used, and relevant informa-

tion to be included. Such a framework enables researchers to ensure that sufficient

information of their data is included.

The need for metadata schema is also substantiated in sections ‘‘small-scale collab-

oration user story: The AIPAM project’’ and ‘‘large consortia user stories: The BIG-

MAP project’’ where the collaborators could validate the work of other team mem-

bers by independently reproducing the results. However, in scientific collaboration,

the data generation process often mutates as the data generation workflow is

continually improved or optimized. This mutable aspect of the data generation pipe-

line is reflected in the data being generated and poses challenges in standardizing

the schema of metadata. An example of a mutable data generation pipeline in the

AIPAM project is presented in Figure 8, where blocks such as data transformation

and approximation source can be altered, added, or removed depending upon

the progress of the research. These dynamic changes, if accounted in the metadata,

can aid researchers to utilize84 or reproduce53 and validate the data with ease.

There are several studies that aimed to formalize the metadata for various

domains,85,86 and a common trait among them is utilization and formalization of tax-

onomy to represent key objects. For more complex domains, such as scientific work-

flows or digital objects across the World Wide Web, ontology-based graphs could

be used. In efforts to establish semantic web by representing meta-information on

digital objects in the World Wide Web, the Resource Descriptive Framework (RDF)

has been established. In RDF, meta-information on digital objects, or resources, is

materialized with predicates, which pertains to some aspect of the resource and

properties that provide some associated value. For example, a resource such as

RDM.pdf can be represented with certain predicates such as file size and a property

of that predicate such as 1,000 kb. A collection of RDF statements with predicates

and properties of any given resource is synonymous with building an ontology-

based graph representing associated knowledge on that resource. Although it

might be quite difficult for researchers to develop and maintain ontology-based

metadata for small-scale collaborations, for large-scale collaborations, the benefit

of utilizing ontology-based metadata outweighs the complexity associated with

training researchers and maintaining it.

Write detailed documentation

To highlight the importance of documentation in the FAIRification process, we

decided to add this as a separate layer to the FAIR digital object (Figure 7).
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Figure 8. A mutable data pipeline for AIPAM project
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Documentation can explain how and why certain steps or decisions were made over

others. What is obvious to you now may not always be intuitive for other people or

even to the future you. Therefore, documenting these decisions would be of great

help in data re-usability and validation. This can include adding relevant comments

on your code or maintaining an activity log for your daily activities as a researcher.

Moreover, researchers should ensure that meeting minutes are recorded for every

meeting conducted with the team. Not only does this ensure that every attendee

is on the same page after the discussions but also this can be a good way to realize

what key decisions were made over time.

Automate the generation of metadata, persistent identifiers, services, and
ontologies

One of the most common reasons why most research groups are not following RDM

practices is because scientists already have so much on their plates. Therefore, it

would greatly help to automate the creation of the fundamental requirements of a

FAIR digital object. The creation of persistent identifiers (PIDs) can be programmed

within the user interface as datasets are uploaded to the secure database, for

example. Moreover, metadata generation can be automated using parsers that

extract information from a data standard.87

Preserve raw data independently

A secure and separate copy of the raw data shall be preserved at all times. This copy

shall not be touched or manipulated directly for any process. There are cases when

important data points may accidentally be deleted or modified in the processing

stage; therefore, having a secure copy of the raw data ensures that researchers

have room for such errors and may always go back and retrieve the original data

at any point.
Data sharing

We have seen from the user stories in section ‘‘academia experiences’’ how common

multiscale and interdisciplinary teams are in research. Data acquired from one work

package may be needed in another that is not necessarily within the same institution

or even country. Usually, data acquisition is performed by experimental or compu-

tational scientists, while machine learning modeling is established by computer sci-

entists.29 Thus, a data-sharing phase to facilitate this communication between the

three parties is typical.
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The data of concern at this phase are intermediate and active data results that are

expected to undergo more processing or validation and thus are, for the most

part, confidential. These are usually unpublished data critical in ensuring the novelty

of a researcher’s work, for example. The task of sharing such confidential data can be

approached in one of two ways depending on the needs of the project and the pol-

icies imposed by their funding institutions. On one hand, researchers can opt

to develop their own data-sharing platform to ensure a more specific and personal-

ized experience. The other option is to use a third-party infrastructure designed

specifically for private local data access, such as the NOMAD Oasis,88 Figshare,89

Materials Project Contribution Platform (MPContribs),90 and DLHub.91

On-premise development of a data-sharing platform

Whether we like it or not, international relations do affect the extent of open and

accessible science. Sanctions between countries, for example, may force researchers

from a country to lose access to an existing infrastructure in use if this is hosted by a

sanctioning country. Google Workspace, for example, has restricted access in

Crimea, Cuba, the so-called Donetsk People’s Republic and Luhansk People’s Re-

public, Iran, North Korea, and Syria.92 Therefore, being dependent on the services

of a private company from another country has low risks in terms of sudden restric-

tions but is not impossible. Hence, it is useful to host your own infrastructure

(including database as we will see in section ‘‘data storage, preservation, publishing,

and reuse’’) within your own country or institution where you have full control on ac-

cess and flexibility, to some extent. Advantages of this approach include the

following:

� Freedom in personalizing the database structure, infrastructure components,

and access control

� Minimum risks of sudden interruption of services

Disadvantages of this approach include the following:

� Additional workforce (computer scientists, full stack developers, data engi-

neers) required for the development of the platform and the database

In this section, we provide recommendations on how to responsibly create your own

on-premise data-sharing platform while ensuring consistently FAIR data.

Develop an efficient data-sharing platform with a user-intuitive Web portal

Building a browser-based infrastructure is one of the most common ways of making

data findable. This is because this option gives the least amount of overhead for peo-

ple trying to search for data.7 This way, anyone with an internet connection can find

data by putting in a website link on the Web browser, unlike desktop or mobile

applications, where one would need to download and allocate some amount of

storage memory to keep things running. It is essential to design this website consid-

ering the user experience. It should be user-friendly and intuitive enough to be used

without external support. This can be achieved by providing a Help page or display-

ing instructions on each relevant component. The most common and recommended

frameworks for Web development are React, Angular, and Vue, which are all based

on the programming languages HTML, CSS, and Javascript.

An efficient data-sharing platform is a website containing all the needed data

required to enable collaboration in a small-scale environment or within a consortium.

It should allow for data searching, filtering, sorting, uploading, downloading,
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updating, and deleting.With an efficient data-sharing platform supported with com-

plete metadata and documentation, the problem faced with the departure of a team

member can bemitigated. All the previous data produced can be accessed from this

platform in a timely manner. The search capability is expected to operate beyond

chemical formulas or material labels but rather support discovery by surface layer,

adsorption layer, catalysis, synthesis recipes, etc.93

Create an application programming interface

An application programming interface (API) allows for communication between the

front end and the back end within an infrastructure. They enable automatic data

crawling and automated access through programmable queries,7 given that they

are accompanied with a well-documented structure and metadata. With an API,

data can be retrieved from code that can be written in any programming language

without prior knowledge of how the database operates internally. It helps to

decouple the data with a domain-specific client or Web portal. Example languages

for building an API include Python Flask, FastAPI, ASP.net, Django, and node.js. The

Open Databases Integration for Materials Design (OPTIMADE) consortium was

created to design and implement API standards to enable seamless access and inter-

operability across materials databases.94 Researchers or software developers can

integrate OPTIMADE into their Web development process or choose to still develop

their own API, but it is recommended to follow the specifications developed by

OPTIMADE to ensure interoperability.

Display intelligent visualization

Visualizations help data be understood not only by the experts in the field but also by

other users that are not very knowledgeable about the topic. They provide helpful

insights into the data, opening doors to data repurposing. We have also continually

highlighted that we are preparing data to be fed to machine learning models aimed

at accelerating materials discovery. Part of pre-processing is data cleaning, by which

visualizations such as plots and histograms are integral in detecting patterns, trends,

and outliers. Creating visualizations from pre-processing to post-processing to

publishing reveals important conclusions that may not be achieved without this

step. The most common languages used in data pre-processing are Python and R.

Both offer plotting and visualization libraries that help in exploratory data

analysis.95,96

For publishing in chemistry and in materials science, a common tool used for visual-

izing chemical structures in the front-end is Jmol. Jmol is an open-source Java viewer

for chemical structures in 3D. Its HTML5/Javascript counterpart is JSmol,97 which can

be integrated within a React, Angular, or Vue project. Another alternative for 3D

chemical structure modeling used in website development is ChemDoodle.98

Figure 9 illustrates the difference in how chemical structures are displayed using

Jmol and ChemDoodle.

The integration of a JSmol molecule into a Javascript website is much more straight-

forward based on personal experience. Due to its long-term existence in the market,

it has gained so much popularity that a plethora of documentation and tutorials on

its implementation can be found online. On the other hand, ChemDoodle is a rela-

tively new library and may seem to be more intimidating for integration. However,

seeing how visually more realistic and pleasing it looks, projects such as Winther

et al.99 opt for the use of this library instead. The choice depends entirely on the pref-

erence of the researchers.
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Figure 9. Visualization tools comparison
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Use a third-party private data-sharing infrastructure

The NOMAD Center of Excellence (CoE) offers a private local data infrastructure

called the NOMAD Oasis.27 It can be operated as a stand-alone server with all the

functionality of uploading and sharing data within the user’s institutional network.

It offers to hold data for faster or more private access and can specifically be used

in academia to store data that a researcher does not want to publish yet. The advan-

tages of using this approach include the following:

� Less overhead in the development and use of the data-sharing platform

� Direct use of NOMAD’s established metadata

However, it poses the following disadvantages:

� Minimum control over the features of the infrastructure

� May be less specific to the needs of the project
Materials prediction

This is the phase for implementing artificial intelligence and machine learning

to accelerate materials discovery. The following recommendations are specifically

catered for preserving programs written to run such models.

Implement version control

Researchers should use version control systems to keep track of file changes over

time while documenting when and by whom these changes were made. This allows

researchers to realize how their work has progressed over time and helps new team

joiners know where to start understanding things. If a team is writing code, a good

repository that allows for version control is GitHub.100 Suppose one wants to

develop their own version control within the website they are developing; in that

case, they can implement this by starting with saving logs of all the operations per-

formed within a page per user. Using a linear, single-chain version control technique

is recommended where one can view changes in previous links but cannot make any

modifications on any version other than the current one. This means that, within a

single working branch, committed versions cannot be edited anymore as this will

cause version forking that is difficult to manage. Changes can only be made on

the latest, most current, working version of the code within that branch. Usually,

there is a master branch that is the final working directory of the code project where

different branches contribute and get merged after passing a code quality check.
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Capture the environment

To fully replicate an analysis later and get the same results as before, one will need to

live in the same environment as that time. This means that they need the exact

version of the tool or software used, the same operating system, and the same

version for all the prerequisite packages and libraries of that tool or software. This

is especially relevant for software development, where certain libraries get depre-

cated while other libraries continue to be improved and developed, causing a

peer dependency error due to backward incompatibility. For this reason, we recom-

mend working in a self-contained computing environment such as a Docker

container that can be assembled anywhere.101 Working on Docker eliminates the

‘‘But it works on my machine!’’ problem. It allows for long-term data preservation

because if, in 5 years, they would want to run a pipeline within a Docker container,

they would still be able to do so, given that the whole environment is captured.

Experimental validation

In order to truly verify the findings from computational and data-driven materials

science, experimental studies are performed.22,102 There is a disconnect between

experimental and computational communities due to data and vocabulary siloes.56

Therefore, facilitating a seamless comparison between the two provides a giant leap

towardmaterial discovery validation.103 In future, materials science aims to achieve a

situation where in silico experiments are calibrated with real-world experimental

data with the least overhead possible.

Convert between various file formats

Parsers can be used to retrieve standardized metadata that aid in interoperability.

With metadata parsing, we can get an artifact’s complete information, allowing us

to convert between file types used across different domains. Multiscale teams are

in serious need of efficient parsers to enable coherent data conversion between

file types. Some tools available for file format conversion are the following:

� Pymatgen104 is a Python library that supports data parsing and conversion be-

tween file types. For example, it allows file type conversion from a Gaussian file

(.gjf) used in chemistry to the coordinate system file type (.xyz) used in compu-

tational materials science.

� OpenBabel105 is a toolkit for converting between chemical file formats. Data

from molecular modeling, chemistry, solid-state materials, and biochemistry

can be searched, converted, analyzed, and stored with OpenBabel. With its

current version, it has support for 118 formats in total, can read 88 formats,

and can write 89.

� NOMAD parser87 converts raw data into a code-independent representation

of the NOMAD Meta Info, the standard metadata structure used by NOMAD

CoE.106

Data storage, preservation, publishing, and reuse

Digital data preservation consists of a sequence of practices aimed at ensuring that

data and metadata remain FAIR on existing computer technology over a sustained

period of time.107 It is important for researchers to understand however, that data

backup does not equate to data preservation.

Storing research data and the associated metadata generated and collected during

a research project life cycle, securely in a durable and accessible form, is a critical

requirement of efficient RDM. Responsible researchers must ensure that data are

stored in a manner that meet all legal and confidentiality requirements while
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ensuring authenticity and integrity. One of the key decisions related to data storage

is predicated on the distinction between the type of data that should be kept during

the project life cycle and the data to be kept even after the project has completed.

This is where the distinction between the ‘‘active’’ data (i.e., the data that are being

processed or worked on during the project) and the ‘‘final’’ data (the results at the

end of the project) should be understood. For example, while in some cases it

may not be necessary to keep records of all incorrect or inconclusive or null results

of an experiment, in other cases those types of results are as important as the final

results for providing a clear account of the research undertaken. A responsible

researcher should assess how the final data results along with the associated

research workflow including data results may be used in other research projects

before discarding any data.

Active data

For active data during the project, there may be several, both internal and external

(owing to the proliferation of cloud-based storage solutions as a cost-effective way

to store large volumes of data) storage solutions to choose from. The key consider-

ations for active data are discussed next.

Have automatic backups in your database. Select a database or repository that

support automatic backups. It would be safe to enable weekly or daily backups de-

pending on how much data are uploaded in a day.

Build a scalable and secure database based on the data you have. Due to the het-

erogeneity of materials data and the different file formats used across different imple-

mentations (especially in experimental science27,29,108), there appears to be a need for

more open and interoperable materials databases.109 The existing databases in the

marketmay not provide sufficientmeans for researchgroups to store andpreserve their

data; therefore, here, we provide recommendations on how people can start building

their own databases to meet their needs and contribute to the community.

In general, data can be structured or unstructured, and, based on this, a database

could be relational or non-relational. If data are structured with a pre-defined format,

data type, and relationship for every entry in a table, then one should use a relational

database. In a relational database, all rows in a table shall follow all the constraints

and relationships of each corresponding column; in other words, it has a schema that

every row should comply with. Some famous examples of relational databases are

Microsoft SQL Server, PostgreSQL, MySQL, MariaDB, and SQLite. On the other

hand, if data are unstructured such that there is no defined format or data type for

each data point, then one should use a non-relational database. In a non-relational

database, every document (equivalent to a row in a relational database) can have

disparate columns and data types. This is often more challenging to manage.

Some of the most-used examples of a non-relational database are MongoDB,

Apache Cassandra, IBM CLoudant, and Couchbase.

To maintain the integrity of the data, we should have secure databases and reposi-

tories. This can be achieved by deploying said database in a secure and trusted server,

either on premise or on the cloud using Web services, and by implementing rules for

authorization access. While building the database, also keep in mind to consider its

scalability on the expansion and continuation of a research project.110,111

Make confidential fields anonymous, if applicable. Allow anonymity within the

database to account for confidential data that shall not be publicized following
3636 Matter 5, 3614–3642, November 2, 2022
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ethical and legal regulations imposed by either the government or the funding

agencies. This is most commonly practiced when dealing with personal health

data, but, in materials science, this might be necessary for non-published data in-

tended only to be shared exclusively within team members.

Data anonymity can be achieved either by encrypting or hashing sensitive data using

cryptography. The difference between the two is that encryption is a two-way func-

tion involving public and private keys, while hashing is a one-way function that

changes plain text into a unique combination of characters. Xu et al.112 provide a re-

view on the different encryption standards widely used today that can be applied to

our confidential data. Software developers can encrypt the input texts or files before

uploading them to the database and only provide the key to decrypt to authorized

users, programmed within the API layer.

Final data

For the final data result, researchers should understand the fundamental differences

between data backup and digital preservation. Digital preservation is a series of

continuous activities/operations (both pre-emptive and reactive) that ensure both

the data and associated metadata remain FAIR on existing computer technology

over a sustained period of time.107

Having an efficient data backup or archiving solution that typically comes with

modern IT infrastructure (e.g., Microsoft Azure,113 Amazon Web Service

[AWS]114) alone is not sufficient to mitigate the risks associated with technological

obsolescence. There are many documented cases115 from libraries and memory

organizations suffering significant data loss despite having a seemingly efficient

data backup and/or archival solution in place. Suitable digital preservation solu-

tions along with a traditional backup or archival strategy is needed to ensure

long-term accessibility and continued usability of research data, especially the final

data results, including detailed metadata about the research workflow and, in

some cases, any software applications, algorithms, or computational models

developed during the project.

Upload your data on established and well-maintained repositories. Researchers

may consider any of the Web-based, freely available, long-term storage solutions

for data preservation and publication, including the following:

� Generalist or all purpose; e.g., Harvard Dataverse,116 DataHub by MIT,117 Fig-

share,89 and Zenodo118

� Materials Science community specific; e.g., NOMAD Repository and

Archive,119 Materials Project,120 AFLOW,121 Catalysis-Hub,122 JARVIS,123

Crystallography Open Database (COD)124 and Citrine Informatics125

The Registry of Research Data Repositories126 provides a list of discipline-specific

repositories.

� Institutional repository: any repository and archival solution recommended

and/or provided by their institution.

These types of storage or repository solutions are considered trusted127 and

preferred to cloud-based file hosting services such as Dropbox or Google Drive,

and multi-purpose software repositories, such as GitHub, as the trusted solutions

offer better preservation, discoverability, and scholarly communications, such as
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citation tracking and impact analysis for research data. Use these platforms to pub-

lish your data as well as to retrieve data from other researchers. The aim of these in-

frastructures is to facilitate FAIR data handling in the easiest way possible.
Other recommendations

Consider DMPs as a part of research assessment

To encourage more researchers to follow and appreciate having proper RDM, it

is the funding bodies’ job to consider DMPs as part of their research assessment.

Beyond the mandates of funding bodies, researchers should recognize and

utilize the greater values of DMPs as an effective tool for documentation and

metadata capture that may reduce the effort needed to prepare the final dataset

for publishing and sharing. Currently, the major funding bodies in the United States

(e.g., National Science Foundation [NSF]128), United Kingdom (e.g., Engineering

and Physical Sciences Research Council [EPSRC]129), and Qatar (e.g., Qatar National

Research Fund [QNRF]107) require a DMP as part of any new funding applications to

encourage and support implementation of good data management practices.

Contribute to data management and materials science consortia and working
groups

Data management and materials science consortia are huge catalysts in improving

the adaptation of FAIR data in the materials science community. GO FAIR,130

Research Data Alliance (RDA),131 Committee on Data (CODATA),132 and

FAIRsharing.org133 are some of the leaders in RDM, targeting all areas of research.

They aim to promote a global collaboration between researchers for efficient data

sharing and reuse guided by the FAIR principles. They provide data management

best practices and recommendations, active working groups, summer schools,

workshops, and seminars, among other things. This makes them great resources

when starting out with following RDM within your group, or even as experts in the

field wanting to contribute more to the community. Examples of domain-specific

consortia and platforms for materials science include the Acceleration Con-

sortium,134 the NOMAD Consortium,119 the FAIRmat Consortium,135 the

OPTIMADE Consortium,94 the USC Materials Consortium,136 and Citrine Infor-

matics.137 These consortia provide many opportunities for scientists to collaborate

and infrastructures to utilize.

Provide sustainable funding and reward FAIR data stewards

We can infer from all these recommendations that reaching FAIR data comes with a

price. Therefore, sustainable funding shall be rewarded to teams making an effort to

make this happen. Funding institutions should reward research teams who actively

participate in efficient data management practices. This will encourage more teams

to ‘‘jump on the train’’ and take these actions more seriously. The development of a

single metadata standard alone, for example, was estimated to cost around $40,000

according to the leaders of the Netherlands Organization for Health Research and

Development (ZonMw).138

Organize and attend RDM training for researchers

Encourage organizing and attending RDM training for researchers and everyone

involved within a research project, including students. Skills in data science and

data stewardship are required to effectively achieve FAIR data.

Include data management in the curricula for degrees

It should be within the institution’s goals to include data management within the

curricula for the next generation of chemists, physicists, material scientists, and
3638 Matter 5, 3614–3642, November 2, 2022
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computer scientists. If we invest in the young researchers of today, we may fully elim-

inate the problems related to data management in the future.
CONCLUSIONS

In this white paper, we outlined key practices to perform at every stage of a research

life cycle to ensure that data remain FAIR and readily available for use in data-driven

research. Making data FAIR requires concerted efforts from all key stakeholders,

including researchers, administrators, and other contributors in a research project.

However, as implied by the daily hurdle researchers face in big data management,

the benefits outweigh the costs. Sufficient understanding of the underlying concepts

and planning from the beginning of a research project can enable RDM activities to

be incorporated within the project workflow to produce good-quality, reusable

dataset.

Low-hanging fruits for effective datamanagement could be achieved by implementing

some of the relevant principles at a work package or a small project level that can be

quickly and easily adopted even for projects with a modest budget. Research projects

with considerablefinancial supportwithin large consortia should consider the following:

� Developing and providing mechanisms and services for the storage, safe-

keeping, and deposition of research data in support of current and future ac-

cess to research data during and after the completion of research projects

� Providing access to services and infrastructures for the storage, safekeeping

and archiving of research data and records, enabling researchers to exercise

their responsibilities in relation to managing their research data in line with

funder policies and the responsible conduct of research

A key barrier to establishing effective good RDMpractices in any project is the lack of

awareness and understanding of its importance. Establishing and fostering knowl-

edge and proficiency in RDM practices is imperative for building a sustainable

research data ecosystem in any discipline. Beyond the initiatives from funding

bodies, research institutions along with other key stakeholders should work together

to groom champions of RDM practices through coordinated training within the

curricula for the next generation of chemists, physicists, materials scientists, and

computer scientists. Adhering to the FAIR principles by following the recommenda-

tions from this paper promotes collaboration and articulated communication be-

tween team members of a research group. Such practice enables acceleration in

research progress, considering that data are exchanged and can be understood

among all collaborators involved in less time. Suppose data are standardized and

their corresponding metadata provides sufficient information to enable reuse and

validation. In that case, users of such data are on the right path to accelerating ma-

terials discovery and reaching critical mass.
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